
Abstract Determination of electrolyte concentrations
(mainly potassium) in vitreous humour has long been con-
sidered an important tool in human death investigations
for the estimation of the post-mortem interval (PMI). On
the basis of its well known potential in ion analysis, capil-
lary zone electrophoresis (CZE) has recently been applied
to achieve a rapid and simultaneous determination of in-
organic ions in this extracellular fluid. In the present work,
artificial neural networks (ANN) were applied for model-
ling of the relationship of multicomponent CZE analysis
of K+, NH4

+, Na+, and Ba2+ ions in vitreous humour with
PMI. In a study based on 61 cases with different causes of
death and a known PMI ranging from 3 to 144 h, the use
of ANNs considering all inorganic ion data from the hu-
man vitreous humour, achieved a substantial improve-
ment of post-mortem interval prediction. Good linear cor-
relation was observed (r2 = 0.98) and in comparison to the
traditional linear least squares (LLS) method applied only
to K+ levels in the vitreous humour, the prediction of PMI
with ANN was improved by a factor of 5 from ≈ ± 15 h to
less than 3 h.
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Introduction

The post-mortem chemical and biochemical analysis of
vitreous humour is widely used in modern forensic path-
ology and forensic toxicology because of the ease of col-
lection and stability after death [1, 2]. The concentrations
of sodium, urea and creatinine in the vitreous humour
have been used for post-mortem diagnoses of several
pathologies (e. g. renal failure, severe dehydration, salt in-
toxication or excessive water intake) [3, 4, 5]. In addition,
the determination of ethanol and drugs in vitreous humour
after death is vital for the estimation of drug concentra-
tions present at the time of death and thus to make infer-
ences on the causes of suspected acute intoxication [6, 7].

Another crucial question in forensic science which has
been faced by using vitreous humour ion analysis or other
methodological strategies, is the determination of the post-
mortem time interval [8, 9, 10, 11]. Recently, Tagliaro et
al. developed a method for the determination of potassium
in human vitreous humour by capillary zone electrophore-
sis, which was successfully, although preliminarily, applied
to the determination of the post-mortem interval [12].

On the another hand, the use of artificial neural net-
works (ANN) for optimisation of high performance capil-
lary zone electrophoresis (HPCE) methods has gained
popularity and has been used with advantage in terms of
reduction of the number of experiments, reduced analysis
time and enhanced statistical evaluation of data [13, 14,
15, 16, 17, 18, 19].

Although, computerised methods have been used in
forensic science with different data sets and for other legal
purposes [20, 21, 22, 23, 24, 25, 26, 27, 28, 29], to the
best of our knowledge, they have been not applied to the
study of ions in vitreous humour to determine the time
since death.

The purpose of the present work was to improve the
statistical correlation between post-mortem interval and ion
concentrations in the human vitreous humor by applying
ANN, a computerised chemometrical analysis method.
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Artificial neural network theory

The back-propagation network theory

In order to translate how the neural network mimics the
human brain into our understanding, the processing of in-
formation is divided in three levels. The first level is the
input layer which receives the information about the sys-
tem; the nodes in the input layer are simple distributive
nodes, which do not alter the input value at all. The third
level is the output layer which is the observable response
or behaviour. The second level represents one or more
hidden layers, which process the information initiated at
the input. The node (neuron) is the basic processing unit
in ANN. The node sums the product of each connection
weighting (wjk) from the node j to the node k and the input
(xj) and the additional weighting or bias to get the sum
value for the node k, Eq.1:

(1)

where γ is the bias value. The sumk of the weighted inputs
is transformed with a transfer function (mostly sigmoid
function) and this function is used to get the output level.
We have used a sigmoid function f(x) = 1/[1/ + exp (– x/θ)],
where x is the weighted sum of inputs and θ is the gain
and x is sumk defined in Eq. 1. The back-propagation net-
work (BPNs) learns by adjusting its weightings according
to the error. The goal of the training method is to change
the weightings between the layers in a direction that min-
imises the error (E). The error E of a network, Eq. 2, is de-
fined as:

(2)

i.e. the squared difference between the target values (de-
sired output) t and the outputs y of the output neurons
summed, over p training pattern and j output nodes. The
error E is minimised according to the steepest descent
method, Eq. 3:

(3)

where η is a positive constant known as the learning rate
and ∆wij(n) the current weighting change for the weight
wij. The weights are calculated in n-th iteration process.

The gradient descent method can be enhanced by a
momentum term from the previous weightings changes
as, Eq. 4:

(4)

where α (momentum factor) is another constant. The
learning rate (lrate) controls the update rate according to
the new weightings change and the momentum acts as sta-
biliser being aware of the previous weighting changes.
During the training process it is necessary to study the ef-
fect of lrate and momentum (α) in order to avoid over-fit-

ting problems. The learning process is stopped when the
network has reached a proper minimum error.

Materials and methods

Reagents

All chemicals were of analytical reagent grade. Imidazole (99%
pure), 18-crown-6-ether (99% pure) and d,l-alpha-hydroxybutyric
acid sodium salt (HIBA) (99% pure) were purchased from Sigma-
Aldrich (Steinheim, Germany). Standard solutions of potassium,
ammonium, sodium and barium were prepared from AnalaR salts
(Merck, Darmstadt, Germany). Water used for sample preparation
was of HPLC grade (Carlo Erba, Milan, Italy). The buffer was pre-
pared daily, filtered and degassed under vacuum through a 0.45 µm
Prep-Disc teflon filter from Bio-Rad (Hercules, Calif.) prior to use.
A Shott Gerate GmbH CG810 pH-meter (Mainz, Germany) was
used for the pH measurements.

For experimental details concerning determination of cations in
a vitreous humour we refer to the paper reported by Tagliaro et al.
[12].

Capillary electrophoresis

A capillary electropherograph P/ACE 5500 (Beckman Coulter,
Fullerton, Calif.) with a filter UV absorbance detector, equipped
with P/ACE Station (Version 1.0) software was employed for all
experiments. An uncoated fused-silica capillary, 75 µm i. d., 47 cm
total length and 40 cm length to the detector, was used. Indirect
UV absorbance detection was performed at 214 nm.

Electrophoretic separations were carried out in a running buffer
containing 5 mM imidazole, 5 mM 18-crown-6-ether and 6 mM
d,l-alpha-hydroxybutyric acid (HIBA) at pH 4.5, the applied volt-
age was 500 V/cm and the temperature was set at 25°C. Indirect
UV detection was set at 214 nm. The sample solutions were injected
hydrodynamically at the anode end of the capillary (0.5 psi for 10 s).

Conditioning of capillary

A new capillary column was conditioned by step-wise rinsing with
1 M NaOH for 10 min, 0.1 M NaOH for 10 min, water for 10 min
and running buffer for 20 min. The capillary was washed daily for
5 min with 0.1 M NaOH, for 5 min with water and for 10 min with
running buffer. Between each run, the capillary was flushed with
0.1 M NaOH for 2 min, water for 2 min, followed by background
electrolyte solution for 6 min. The capillary inlet and outlet vials
were replenished after every 10 injections. At the end of the day,
the capillary was flushed with 0.1 M NaOH for 1 min and water
for 5 min.

Sample collection and preparation

The human vitreous humour samples were obtained from both
eyes of 61 cases of authorised autopsies carried out in the Unit of
Forensic Medicine, Department of Public Medicine and Health,
University of Verona, Verona, Italy. The samples were collected
by needle puncture of the posterior chamber of the eye by gentle
sucking of about 50 µl of vitreous humour with a 1 ml plastic sy-
ringe. All specimens were stored frozen until analysis.

Before injection, vitreous humour samples were diluted 1:20
with a 40 µg/ml aqueous solution of barium as internal standard
(I.S.).

Software and data processing

The 61 original data sets corresponding to the response to the de-
tector for peak areas and peak heights of K+, NH4

+, Na+, and Ba2+

ions in the vitreous humour were used as input data in an input
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layer and post-mortem intervals as an output layer were used for
the chemometrical analysis. The software for the ANN method was
from the TRAJAN programme (Neural Network Simulator, re-
lease 3.0 D, TRAJAN software, 1998), purchased from Trajan
Software Ltd. (Trajan House, Co. Durham, UK).

Results and discussion

Figure 1 shows a typical electropherogram of the analysed
ions in human vitreous humour samples. For validation data
of the method the reader is referred to Tagliaro et al. [12].

PMI estimation using single ion data

The correlation of PMI and vitreous ion concentration
was first studied using single ion data and the linear least
square regression method (LLS).

Figure 2a shows the correlation between PMI and K+

peak areas, as described by the equation y = 101.1 ×
–1155.1 (r2 = 0.8264) (y = peak area; x = PMI) and Fig.
2b the correlation with K+ peak heights, according to the
equation y = 53.1x–1231.2 (r2 = 0.8920) (y = peak height;
x = PMI).

In the case of ammonium ions, the coefficient of corre-
lation was worse than for potassium (r2 = 0.6625) (Fig. 3),
as described by the equation  y = 6.9 × –148.2 (r2 = 0.6625)
(y = peak area; x = PMI) and finally Na+ ions do not show
any significant correlation with PMI (r2 = 0.0407).

Modelling by ANN

In the first stage of evaluation of the potential of ANN,
the method was applied to investigate the modelling abil-
ity between PMI and available data. Comparison with the
values obtained by the conventional LLS approach was
done using a data set containing 61 experimental points of
PMI vs K+, Na+, NH4

+, and Ba2+ (peak height and area).
The whole pattern (61 × 9) was processed as the training
set on a Pentium personal computer using the back-prop-
agation neural networks method (BPNNs) with the TRA-
JAN programme. Before any calculations were made the
data were normalised by the programme (range 0.1–0.9).
First, the optimal structure of ANN was searched. In order
to determine the optimal number of nodes in a hidden
layer, we plotted the RMS error as a function of the num-
ber of neurons in the hidden layer. It is evident from Fig.
4. that 4 or 5 nodes are sufficient to obtain low RMS val-
ues and that a further increase in the number of nodes
does not bring any improvement. The optimal ANN ar-
chitecture is shown in Fig.5.

During the application of BPNN, the goal of net training
is to minimise the root mean square error (RMS), Eq. 5:

(5)

where yij are the elements of the matrix (N × M) for train-
ing or test set, and outij are the elements of the output ma-
trix (N × M) of the neural network, N is the number of
variables in the pattern and M is the number of samples.
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Fig.2 a LLS correlation of potassium peak areas with PMI and 
b LLS correlation of potassium peak heights with PMI

a b

Fig.1 Example of a CZE electropherogram of cations in human
vitreous humour



In order to avoid over-training, the performance of the
neural network was tested every 100 or 1,000 epochs dur-
ing the training and the weightings for the minimal RMS
(root mean squares Eq. 5) for the learning and test set
were recorded. The training conditions were momentum
0.3, learning rate 0.6, as recommended in the Trajan pro-
gramme (Chapter 3.4). We also tried other values, but those
mentioned were optimal. The number of learning cycles
was fixed to 40,000. We have stopped the training after this
value of epochs was reached as no significant improve-
ment for higher values was obtained. The average value
of the error, calculated by Eq. 5, for the complete training
set was 5.8% rel. which is an excellent fit, much better
than the one obtained using only the K+ peak area (Fig.2).

Figure 6 shows the results of modelling applied to the
61 real forensic cases. Excellent correlation between ex-
perimental post-mortem interval and PMI values pre-
dicted by the ANN was obtained with a coefficient of cor-
relation of 0.9810. Table 1 summarises the estimated val-
ues found for PMI using the LLS and ANN models. Sig-
nificant improvement in the estimation of time after death
was obtained when we used the complete available data,
as it is shown by the decrease of the error of prediction
from 15.28 to 4.69 h (> 3-fold).

8

Fig.3 a Correlation of ammonium peak areas with PMI and b
area of Na+ peak as a function of PMI

Fig.4 RMS values versus the number of nodes in the hidden layer

Fig.5 Optimal ANN structure to model multicomponent analysis
of vitreous humour as a function of PMI (8 :4 :1)

Fig.6 Correlation of PMI predicted by the multivariate ANN
method and the actual PMI

a b
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Table 1 Modelling: estimated values of PMI with LLS and ANN using complete data for all cases

Cases Real PMI PMI predicted Dif. (PMIpred. – Difference PMI predicted Dif. (PMIpred. – Difference
(h) by LLS (h) PMIexp.) (h) (%) by ANN (h) PMIexp.) (h) (%)

1 48.00 129.78 81.78 170.38 50.87 2.87 5.98
2 125.00 133.40 8.40 6.72 125.80 0.80 0.64
3 63.00 97.68 34.68 55.05 64.23 1.23 1.95
4 87.00 151.38 64.38 74.00 88.65 1.65 1.90
5 34.00 36.44 2.44 7.18 27.62 6.38 18.76
6 20.00 5.67 –4.33 71.65 23.99 3.99 19.95
7 40.00 49.27 9.27 23.18 35.57 4.43 11.08
8 36.00 24.47 –1.53 32.03 32.69 3.31 9.19
9 7.00 6.18 –0.82 11.71 19.20 12.20 174.29

10 75.00 64.84 –0.16 13.55 64.20 10.80 14.40
11 40.00 25.12 –14.88 37.20 31.93 8.07 20.18
12 84.00 55.85 –8.15 33.51 85.74 1.74 2.07
13 24.00 14.46 –9.54 39.75 29.38 5.38 22.42
14 19.00 8.13 –10.87 57.21 18.19 0.81 4.26
15 24.00 16.93 –7.07 29.46 29.34 5.34 22.25
16 33.00 13.09 –19.91 60.33 30.52 2.48 7.52
17 33.00 15.03 –17.97 54.45 29.01 3.99 12.09
18 33.00 19.23 –13.77 41.73 38.08 5.08 15.39
19 32.00 14.49 –17.51 54.72 31.16 0.84 2.63
20 52.00 35.32 –16.68 32.08 61.33 9.33 17.94
21 27.00 14.92 –12.08 44.74 26.27 0.73 2.70
22 24.00 12.82 –11.18 46.58 24.50 0.50 2.08
23 36.00 13.04 –22.96 63.78 35.07 0.93 2.58
24 62.00 44.29 –17.71 28.56 64.69 2.69 4.34
25 19.00 37.85 18.85 99.21 26.36 7.36 38.74
26 21.00 19.80 –1.20 5.71 28.05 7.05 33.57
27 36.00 44.22 8.22 22.83 50.71 14.71 40.86
28 46.00 47.47 1.47 3.20 41.47 4.53 9.85
29 85.00 73.34 –11.66 13.72 83.77 1.23 1.45
30 21.00 16.54 –4.46 21.24 21.45 0.45 2.14
31 38.00 48.57 10.57 27.82 44.22 6.22 16.37
32 57.00 56.53 –0.47 0.82 55.20 1.80 3.16
33 48.00 64.83 16.83 35.06 59.17 11.17 23.27
34 72.00 95.34 23.34 32.42 77.72 5.72 7.94
35 14.00 19.24 5.24 37.43 20.53 6.53 46.64
36 40.00 40.99 0.99 2.48 35.87 4.13 10.33
37 59.00 53.18 –5.82 9.86 57.24 1.76 2.98
38 3.00 11.83 8.83 294.33 11.02 8.02 267.33
39 27.00 25.54 –1.46 5.41 19.51 7.49 27.74
40 85.00 116.09 31.09 36.58 83.00 2.00 2.35
41 144.00 111.98 –32.02 22.24 143.50 0.50 0.35
42 36.00 49.86 13.86 38.50 40.13 4.13 11.47
43 53.00 59.12 6.12 11.55 49.32 3.68 6.94
44 31.00 23.82 –7.18 23.16 27.85 3.15 10.16
45 9.00 8.94 –0.06 0.67 12.83 3.83 42.56
46 39.00 62.12 23.12 59.28 45.78 6.78 17.38
47 56.00 92.84 36.84 65.79 62.51 6.51 11.63
48 81.00 79.71 –1.29 1.59 77.21 3.79 4.68
49 20.00 6.64 –13.36 66.80 24.42 4.42 22.10
50 26.00 10.37 –15.63 60.12 20.80 5.20 20.00
51 36.00 12.82 –23.18 64.39 26.73 9.27 25.75
52 46.00 22.56 –23.44 50.96 31.73 14.27 31.02
53 12.00 18.64 6.64 55.33 15.62 3.62 30.17
54 21.00 25.05 4.05 19.29 21.28 0.28 1.33
55 37.00 53.88 16.88 45.62 42.98 5.98 16.16
56 45.00 67.58 22.58 50.18 52.34 7.34 16.31
57 64.00 82.84 18.84 29.44 61.27 2.73 4.27
58 39.00 26.00 –13.00 33.33 35.17 3.83 9.82
59 36.00 41.56 5.56 15.44 38.72 2.72 7.56
60 72.00 55.35 –16.55 23.13 66.88 5.12 7.11
61 144.00 120.56 –23.44 16.28 140.50 3.50 2.43

Sum – – 932.31 – – 286.39 –
Average – – 15.28 – – 4.69 –

Residual



Additional calculations

Similar results were obtained when we used only peak ar-
eas or peak heights. The number of nodes in the hidden
layer was four in both cases. The correlation between the
experimental post-mortem interval and PMI values pre-
dicted by the ANN using only peak areas, was also satis-
factory with an r2 value of 0.9834. The comparison of
PMI values estimated by LLS and ANN shows that the re-
sults are slightly worse than those (Table 1) when com-
plete data are used for the calculations. Similarly, using
only peak heights the average error of PMI estimate was
slightly higher (4.95 h).

The use of barium as internal standard

The changes in the peak heights of Ba2+ as the internal
standard are due to differences in the amount loaded in the
capillary and variation in viscosity of the vitreous humour
samples. The presence of a Ba2+ peak in the input data
acts as a normalisation factor in the neural network calcu-
lations. Without this information the average residuals of
modelling and prediction were greater than those when
complete data sets were used. While average residuals for
modelling and prediction of complete data were 4.69 and
2.83, without Ba2+ the values obtained were 4.80 and 4.05,
respectively.

Also, the normalisation procedure of all data (areas and
heights) using peak heights for barium was made but the
estimation of PMI using this approach does not improve
the precision of modelling and prediction.

Prediction by ANN

The data set was divided into the learning set (51 patterns)
and the test set (10 patterns). Good agreement between
PMIexp and PMIpred by the ANN method for the complete
training set was observed when we used either all avail-
able data, peak areas or heights. Then, in order to check
the proposed method, data sets corresponding to 10 se-
lected forensic cases, not included in the training set, were
tested. The comparison of both methodologies of predic-
tion was done. Table 2 shows the results of the prediction
obtained by LLS (for K+ only) and by the ANN method
using all available data, peak areas and peak heights, re-
spectively. PMI values predicted by ANN were in all
cases much better (more than 3 times) than the values ob-
tained by the classical LLS method. Using only peak ar-
eas or peak heights the difference in the average residual
was not significant. However, the best prediction of PMI
(5.2 times) was achieved using all available data.

The results show for the first time the usefulness of
multivariate data ion analysis in the vitreous humour by
CZE-ANN for inferring on the time since death. In partic-
ular, ANN modelling and prediction to estimate the post-
mortem interval proved to be much more accurate than
the LLS method conventionally used for this purpose.

In conclusion, in the present work ANN was used for
the first time to model correlation between vitreous hu-
mour cation analysis and PMI with a very good fit. To this
aim CZE, which provides direct, accurate and simultane-
ous determination of potassium, ammonium, sodium, bar-
ium in untreated vitreous humour, offers an almost ideal
instrumental tool.

In comparison to the traditional approach based on a
linear correlation between potassium concentration and
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Table 2 Prediction of PMI values for 10 selected forensic cases: comparison of conventional LLS and proposed ANN methods

6 20.00 5.67 –14.33 23.17 3.17 23.68 3.68 11.59 –8.41
12 84.00 55.85 –28.15 84.33 0.83 88.55 4.55 80.10 –3.90
19 32.00 14.49 –17.51 31.14 –0.86 30.99 1.01 30.89 –1.11
21 27.00 14.92 –12.08 25.58 –1.42 31.04 4.04 29.46 2.46
29 85.00 73.34 –11.66 77.92 –7.08 84.98 0.02 80.21 –4.79
32 57.00 56.53 –0.47 54.39 –2.61 57.30 0.30 52.62 –4.38
41 144.00 111.98 –32.02 143.50 –0.50 98.93 45.07 132.30 –11.70
44 31.00 23.82 –7.18 29.00 –2.00 30.85 0.15 32.27 1.27
54 21.00 25.05 4.05 24.02 3.02 23.66 2.66 33.20 12.20
57 64.00 82.84 18.84 57.23 –6.77 63.80 0.20 64.27 0.27

Sum – – 146.29 – 28.26 – 61.68 – 50.49
Average – – 14.63 – 2.83, – 6.17 – 5.05

Residual 3.04a

a In the course of the revision of the manuscript additional cases were collected. From a total of 72 cases the average difference in pre-
diction was 3.04 h
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post-mortem time, the proposed model greatly improves
the prediction of the post-mortem interval.

These considerations are particularly relevant if we
consider that vitreous humour ion analysis is in practice
the only objective tool to infer on the time of death in the
hands of forensic pathologists in the time window 1–5
days after death (when the body temperature has reached
the ambient temperature).

On the basis of these considerations, multivariate
analysis of different parameters which can easily been
performed by ANN seems to be the best strategy to infer
on the time of death, also in respect to the general rules of
admissibility in court.
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